Arabidopsis type I proton-pumping pyrophosphatase expresses strongly in phloem, where it is required for pyrophosphate metabolism and photosynthate partitioning.

نویسندگان

  • Gaston A Pizzio
  • Julio Paez-Valencia
  • Aswad S Khadilkar
  • Kamesh Regmi
  • Araceli Patron-Soberano
  • Shangji Zhang
  • Jonathan Sanchez-Lares
  • Tara Furstenau
  • Jisheng Li
  • Concepcion Sanchez-Gomez
  • Pedro Valencia-Mayoral
  • Umesh P Yadav
  • Brian G Ayre
  • Roberto A Gaxiola
چکیده

Phloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders. The involvement of Arabidopsis (Arabidopsis thaliana) type I proton-pumping pyrophosphatase (AVP1) in phloem loading was analyzed at genetic, histochemical, and physiological levels. A transcriptional AVP1 promoter::GUS fusion revealed phloem activity in source leaves. Ubiquitous AVP1 overexpression (35S::AVP1 cassette) enhanced shoot biomass, photoassimilate production and transport, rhizosphere acidification, and expression of sugar-induced root ion transporter genes (POTASSIUM TRANSPORTER2 [KUP2], NITRATE TRANSPORTER2.1 [NRT2.1], NRT2.4, and PHOSPHATE TRANSPORTER1.4 [PHT1.4]). Phloem-specific AVP1 overexpression (Commelina Yellow Mottle Virus promoter [pCOYMV]::AVP1) elicited similar phenotypes. By contrast, phloem-specific AVP1 knockdown (pCoYMV::RNAiAVP1) resulted in stunted seedlings in sucrose-deprived medium. We also present a promoter mutant avp1-2 (SALK046492) with a 70% reduction of expression that did not show severe growth impairment. Interestingly, AVP1 protein in this mutant is prominent in the phloem. Moreover, expression of an Escherichia coli-soluble pyrophosphatase in the phloem (pCoYMV::pyrophosphatase) of avp1-2 plants resulted in severe dwarf phenotype and abnormal leaf morphology. We conclude that the Proton-Pumping Pyrophosphatase AVP1 localized at the plasma membrane of the sieve element-companion cell complexes functions as a synthase, and that this activity is critical for the maintenance of pyrophosphate homeostasis required for phloem function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constitutive and Companion Cell-Specific Overexpression of AVP1, Encoding a Proton-Pumping Pyrophosphatase, Enhances Biomass Accumulation, Phloem Loading, and Long-Distance Transport.

Plant productivity is determined in large part by the partitioning of assimilates between the sites of production and the sites of utilization. Proton-pumping pyrophosphatases (H(+)-PPases) are shown to participate in many energetic plant processes, including general growth and biomass accumulation, CO2 fixation, nutrient acquisition, and stress responses. H(+)-PPases have a well-documented rol...

متن کامل

Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants.

Constitutive expression of the Escherichia coli ppa gene encoding inorganic pyrophosphatase resulted in sugar accumulation in source leaves and stunted growth of transgenic tobacco plants. The reason for this phenotype was hypothesized to be reduced sucrose utilization and loading into the phloem. To study the role of PPi in phloem cells, a chimeric gene was constructed using the phloem-specifi...

متن کامل

Conjecture Regarding Posttranslational Modifications to the Arabidopsis Type I Proton-Pumping Pyrophosphatase (AVP1)

Agbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of this gene in translational research, information regarding the intracellular localization and functional plasticity of the pump re...

متن کامل

Ammonium toxicity and the real cost of transport.

References 1 Greiner, S. et al. (1999) Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat. Biotechnol. 17, 708–711 2 Hemberg, T. (1985) Potato rest. In Potato Physiology (Li, P.H., ed.), pp. 353–388, Academic Press 3 Suttle, J.C. (1995) Postharvest changes in endogenous ABA levels and ABA metabolism in relation to dormancy in potat...

متن کامل

An investigation of bisphosphonate inhibition of a vacuolar proton-pumping pyrophosphatase.

We report the results of a three-dimensional quantitative structure-activity relationship (3D-QSAR)/comparative molecular field analysis (CoMFA) of the activity of 18 bisphosphonates and imidodiphosphate in the inhibition of a mung bean (Vigna radiata L.) vacuolar proton pumping pyrophosphatase (V/H(+)-PPase; EC 3.6.1.1). We find an experimental versus QSAR predicted pK(app)(i) R(2) value of 0....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 167 4  شماره 

صفحات  -

تاریخ انتشار 2015